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The hereditary nature of chorea was noted in the 19th 
century by several doctors,1–4 but George Huntington’s 
vivid description led to the eponymous designation of 
the disorder as Huntington’s disease.5 Over the next 
few decades, the worldwide distribution of the disorder 
and its juvenile form were recorded. The discovery of 
the causal HD gene (table 1) has stimulated research, 
and work is now focusing on molecular mechanisms of 
disease.  

Clinical fi ndings in Huntington’s disease
Individuals with Huntington’s disease can become 
symptomatic at any time between the ages of 1 and 
80 years; before then, they are are healthy and have no 
detectable clinical abnormalities.9 This healthy period 
merges imperceptibly with a prediagnostic phase, when 
patients show subtle changes of personality, cognition, 
and motor control. Both the healthy and prediagnostic 
stages are sometimes called presymptomatic, but in fact 
the prediagnostic phase is associated with fi ndings, even 
though patients can be unaware of them.10 Diagnosis 
takes place when fi ndings become suffi  ciently developed 
and specifi c.11 In the prediagnostic phase, individuals 
might become irritable or disinhibited and unreliable at 
work; multitasking becomes diffi  cult and forgetfulness 
and anxiety mount. Family members note restlessness or 
fi dgeting, sometimes keeping their partners awake at 
night.4 Eventually, this stage merges with the diagnostic 
phase (see webmovie), during which time aff ected 
individuals show distinct chorea, incoordination, motor 
imper sistence, and slowed saccadic eye movements.12,13

Cognitive dysfunction in Huntington’s disease, often 
spares long-term memory but impairs executive 
functions, such as organising, planning, checking, or 
adapting alternatives, and delays the acquisition of new 
motor skills.4,14 These features worsen over time; speech 
deteriorates faster than comprehension. Unlike cog-
nition, psychiatric and behavioural symptoms arise with 
some frequency but do not show stepwise pro gression 
with disease severity. Depression is typical and suicide is 
estimated to be about fi ve to ten times that of the general 
population (about 5–10%).14–17 Manic and psychotic 
symptoms can develop.4 

Suicidal ideation is a frequent fi nding in patients with 
Huntington’s disease. In a cross-sectional study, about 
9% of asymptomatic at-risk individuals contemplated 
suicide at least occasionally,11 perhaps a result of being 
raised by an aff ected parent and awareness of the disease. 
In the prediagnostic phase, the proportion rose to 22%, 
but in patients who had been recently diagnosed, suicidal 
ideation was lower. The frequency increased again in 
later stages of the illness.11 The correlation of suicidal 
ideation with suicide has not been studied in people with 
Huntington’s disease, but suicide attempts are not 
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I searched Pub Med from 1965-2005 for the term “Huntington’s Disease” cross 

referenced with the terms “apoptosis”, “axonal transport”, “mitochondria”, “animal 
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onset”, “identical twins”, “neurodegeneration”, and “imaging”. I translated all non-English 
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chapters were included because they provide comprehensive overviews beyond the scope 

of this Seminar. The reference list was further modifi ed during the peer-review process 

based on comments from the reviewers. 

Year Event Publications (n)*

1374 Epidemic dancing mania described ..

1500 Paracelsus suggests CNS origin for chorea ..

1686 Thomas Sydenham describes post-infectious chorea ..

1832 John Elliotson identifi es inherited form of chorea1 ..

1872 George Huntington characterises Huntington’s disease5 ..

1953 DNA structure elucidated 5

1955 Huntington’s disease described in Lake Maracaibo region of Venezuela 13

1967 World Federation of Neurology meeting on Huntington’s disease 38

1976 First animal model (kainic acid) of Huntington’s disease described6 100

1983 Gene marker for Huntington’s disease discovered 138

1993 HD gene identifi ed;7 Huntington study group formed for clinical trials 172

1996 Transgenic mouse developed8 242

2000 Drugs screened for eff ectiveness in transgenic animal models 344

*Approximate number of publications on Huntington’s disease cited for that year in the Current List of Medical 

Literature (before 1966) and in PubMed (1967 onwards). 

Table 1: History of Huntington’s disease

See Online for webmovie
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uncommon. In one study, researchers estimated that 
more than 25% of patients attempt suicide at some point 
in their illness.18 Individuals without children might be at 
amplifi ed risk,19,20 and for these people access to suicidal 
means (ie, drugs or weapons) should be restricted. The 
presence of aff ective symptoms, specifi c suicidal plans, or 
actions that increase isolation (eg, divorce, giving away 
pets) warrants similar precautions.20    

Although useful for diagnosis, chorea (fi gure 1) is a 
poor marker of disease severity.21,22 Patients with early-
onset Huntington’s disease might not develop chorea, or 
it might arise only transiently during their illness. Most 
individuals have chorea that initially progresses but then, 
with later onset of dystonia and rigidity, it becomes less 
prominent.21,22

Another fi nding in Huntington’s disease that 
contributes to patients’ overactivity is motor impersis-
tence—the inability to maintain a voluntary muscle 
contraction at a constant level (fi gure 2).23 This diffi  culty 
leads to changes in position and sometimes compensatory 
repositioning. Incapacity to apply steady pressure during 
handshake is characteristic of Huntington’s disease and 
is called milkmaid’s grip. Motor impersistence is 
independent of chorea and is linearly progressive, making 
it a possible surrogate marker of disease severity.7

Fine motor skills, such as fi nger-tapping rhythm and 
rate, are useful for establishing an early diagnosis of 
Huntington’s disease: gross motor coordination skills, 
including gait and postural maintenance, deteriorate 
later in the disorder’s course. Such changes, unlike 
chorea, directly impair function, a fi nding that is, in part, 
indicated by the modern preference for the terminology 
Huntington’s disease rather than Huntington’s chorea. 

As motor and cognitive defi cits become severe, patients 
eventually die, usually from complications of falls, 
inanition, dysphagia, or aspiration. Typical latency from 
diagnosis to death is 20 years.4

Huntington’s disease in juveniles (onset before age 
20 years and as early as 2 years) and some adults can 
present with rigidity without signs of chorea.2,24,25 Such 
individuals can be misdiagnosed with Parkinson’s 
disease, catatonia, or schizophrenia. Slowed saccadic eye 
movements are usually prominent in these patients—
jerking of the head to look to the side is characteristic. 
Seizures are fairly typical in young patients and cerebellar 
dysfunction can arise.24,25 A decline in motor milestones 
or school performance is sometimes an early fi nding in 
children with Huntington’s disease.      

Diff erential diagnosis
Diagnosis of Huntington’s disease is straightforward in 
patients with typical symptoms and a family history. 
However, dentatorubropallidoluysian atrophy,26 Hunt-
ington’s disease-like 2 (frequent in black Americans and 
South Africans),27 and a few other familial disorders28,29 

are phenotypically indistinguishable from the disorder. 
Furthermore, about 8% of patients do not have a known 

aff ected family member.30,31 Neuroacanthocytosis can 
also mimic Huntington’s disease,32 but arefl exia, raised 
creatine kinase, and the presence of acanthocytes are 
distinctive. Huntington’s disease should not be confused 
with tardive dyskinesia, chorea gravidarum, hyperthyroid 
chorea, vascular hemichorea, the sometimes unilateral 
post-infectious (Sydenham’s) chorea, and chorea 
associated with antibodies against phospholipids. By 
comparison with Huntington’s disease, these disorders 
have a diff erent time course, are not familial, and do not 
have motor impersistence, impaired saccades, and 
cognitive decline as characteristics. In young people, 
Huntington’s disease can be confused with hepato-
lenticular degeneration and subacute sclerosing 
panencephalitis.    

Neuropathology 
Neuropathological changes in Huntington’s disease are 
strikingly selective, with prominent cell loss and atrophy 
in the caudate and putamen.33–35 Striatal medium spiny 
neurons are the most vulnerable. Those that contain 
enkephalin and that project to the external globus 
pallidum are more involved than neurons that contain 
substance P and project to the internal globus 
pallidum.33,34 Interneurons are generally spared. These 
fi ndings accord with the hypothesis that chorea 
dominates early in the course of Huntington’s disease 
because of preferential involvement of the indirect 
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Figure 1: EMG recording of chorea in patient with stage I Huntington’s disease

Recording is made with standard belly tendon using surface disc electrodes placed over the fi rst dorsal interosseus 

muscle. Note the irregular pattern of discharges, with variable amplitude, duration, and rise times of every EMG 

burst. Healthy individuals at rest show no EMG activity.  
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Figure 2: EMG recording of motor impersistence

The patient is instructed to maximally abduct the second digit against resistance and to maintain it. Note that 

motor activity fades repeatedly. The parenthetical inclusion is a copy of the fi rst 400 ms of resting chorea shown in 

fi gure 1, adjusted for the diff erent amplitude settings, for comparison. Note that choreiform bursts intermittently 

exceed the EMG activity from maximum volitional eff ort. Healthy individuals show consistent EMG amplitude 

during this task.
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pathway of basal ganglia-thalamocortical circuitry.11 

Other brain areas greatly aff ected in people with 
Huntington’s disease include the substantia nigra, 
cortical layers 3, 5, and 6, the CA1 region of the 
hippocampus,36 the angular gyrus in the parietal lobe,37,38 
Purkinje cells of the cerebellum,39 lateral tuberal nuclei 
of the hypothalamus,40,41 and the centromedial-
parafascicular complex of the thalamus.42

In early symptomatic stages of Huntington’s disease, 
the brain could be free of neurodegeneration.43–45 How-
ever, evidence of neuronal dysfunction is abundant, 
even in asymptomatic individuals. Cortical neurons 
show decreased staining of nerve fi bres, neurofi laments, 
tubulin, and microtubule-associated protein 2 and 
diminished complexin 2 concentrations.46,47 These 
elements are associated with synaptic function, 
cytoskeletal integrity, and axonal transport and suggest 
an important role for cortical dysfunction in the 
pathogenesis of the disorder.   

One of the pathological characteristics of Huntington’s 
disease is the appearance of nuclear and cytoplasmic 
inclusions that contain mutant huntingtin and 
polyglutamine.48 Although indicative of pathological 
poly glutamine processing, and apparent in aff ected 
individuals long before symptom onset,43 mounting 
evidence suggests that these inclusions are not 
predictors of cellular dysfunction or disease activity, 
which instead seem to be mediated by intermediate 
stages of poly glutamine aggregates.49 In some transgenic 
mouse models of Huntington’s disease, inclusions 
arise only after symptoms begin.50 Cells that have 
inclusions seem to survive longer than those without,51 
and little correlation is seen between the various cellular 
and animal models of the disorder and human 
Huntington’s disease, in terms of the appearance of 
inclusions in histopathological specimens and the onset 
of dysfunction or neurological symptoms.43,50–54 A 
compound that enhances aggregate formation might 
actually lessen neuronal pathological fi ndings.55

Imaging 
Routine MRI and CT in moderate-to-severe Huntington’s 
disease show a loss of striatal volume and increased 
size of the frontal horns of the lateral ventricles,56 but 
scans are usually unhelpful for diagnosis of early 
disorder. Data from PET and functional MRI studies 
have shown that changes take place in aff ected brains 
before symptom onset,57–59 and some MRI techniques 
can precisely measure cortex and striatum.60,61 In fact, 
with these techniques, caudate atrophy becomes 
apparent as early as 11 years before the estimated onset 
of the disease and putaminal atrophy as early as 
9 years.61 In presymptomatic individuals carrying the 
HD gene who show no evidence of progression by 
clinical or neuropsychological tests over 2 years, tensor-
based magnetic resonance morphometry shows 
progressive loss of striatal volume.62

Clinical genetics
The gene for Huntington’s disease (HD) is located on the 
short arm of chromosome four and is associated with an 
expanded trinucleotide repeat. Normal alleles at this site 
contain CAG repeats, but when these repeats reach 41 or 
more the disease is fully penetrant.34,63,64 Incomplete 
penetrance happens with 36–40 repeats, and 35 or less 
are not associated with the disorder. The number of CAG 
repeats accounts for about 60% of the variation in age of 
onset, with the remainder represented by modifying 
genes and environment.65–71

Trinucleotide CAG repeats that exceed 28 show 
instability on replication, which grows with increasing 
size of the repeat; most instability leads to expansion 
(73%), but contraction can also take place (23%).67–69 
Instability is also greater in spermatogenesis than 
oogenesis, in that large expansions of CAG repeats on 
replication happen almost exclusively in males.72–74 These 
fi ndings account for the occurrence of anticipation, in 
which the age of onset of Huntington’s disease becomes 
earlier in successive generations, and the likelihood of 
paternal inheritance in children with juvenile onset 
symptoms. Similarly, new-onset cases of Huntington’s 
disease with a negative family history typically arise 
because of expansion of an allele in the borderline or 
normal range (28–35 CAG repeats), most usually on the 
paternal side.75

Somatic instability of CAG repeats also happens in 
Huntington’s disease. Although fairly minor, somatic 
mosaicism with expansion has been noted in the striatum 
in human beings and in animal models of the disease,76–79 

and this fi nding could contribute to selective vulnerability. 
Mosaicism in lymphocytes might rarely complicate 
genetic testing.75

Identical twins with Huntington’s disease typically 
have an age of onset within several years of each other, 
but in some cases they show diff erent clinical 
phenotypes.76,77 Homozygous cases of the disorder show 
no substantial diff erences in age of onset,78 but the rate of 
progression can be enhanced.79 

Genetic testing and diagnosis of Huntington’s 
disease
Despite early surveys that suggested a high amount of 
interest, fewer than 5% of individuals at risk for 
Huntington’s disease choose to actually pursue predictive 
genetic testing.80 Those who undergo testing generally do 
so to assist in making career and family choices; others 
elect not to test because of the absence of eff ective 
treatment. Predictive testing for the disorder is not 
without risk. Suicide can follow a positive result,81,82 and 
people who are misinformed about the nature of 
Huntington’s disease might seek testing inappropriately. 
Current protocols are designed to exclude testing for 
children or those with suicidal ideation, inform patients 
of the implications of test results for relatives (ie, identical 
twins), identify sources of subsequent support, and 
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protext confi dentiality.83–85 Genetic discrimination against 
individuals with Huntington’s disease has been reported 
but, at least for now, has been rare.86 Few centres are 
sympathetic with requests from doctors for help if 
recommended testing protocols have been ignored.83–85

For individuals who undergo pretest counselling, 
evidence suggests that the overall experience with the 
process is positive. Although anxiety and stress increase 
immediately after being given a positive test result, these 
symptoms return to baseline. Overall, at 2 years, distress 
is lower and well-being higher irrespective of the outcome 
of the test.82 People who receive a negative result can 
sometimes have stress, known as survivor guilt,84,87 and 
subsequent counselling can be of value. Prenatal testing 
is requested substantially less frequently than predictive 
presymptomatic testing, a fi nding attributed to denial, 
resistance to abortion (an option not needed for 
preimplantation genetic testing),88 and concern about 
fetal risks.89,90 Parents who opt not to test express hope 
that treatment will become available for aff ected 
off spring.    

A positive genetic test is cost eff ective and provides 
confi rmation for patients who have developed signs and 
symptoms consistent with Huntington’s disease 
irrespective of family history. Negative test results could 
lead to diagnosis of a syndrome that resembles 
Huntingdon’s disease. At-risk individuals who have 
survived to advanced age without developing signs or 
symptoms sometimes undergo exclusionary testing to 
allay fears that their children or grandchildren might 
have inherited the disorder. Experience with genetic 
testing in Huntington’s disease has served as a model for 
testing protocols for other late-onset disorders and points 
out the challenges and opportunities of genome 
technology.91

Epidemiology and genetic fi tness
Huntington’s disease shows a stable prevalence in most 
populations of white people of about 5–7 aff ected 
individuals per 100 000. Exceptions can be seen in areas 
where the population can be traced back to a few 
founders, such as Tasmania92 and the area around Lake 
Maracaibo21 in Venezuela. In Japan, prevalence of the 
disorder is 0·5 per 100 000, about 10% of that recorded 
elsewhere, and the rate is much lower in most of Asia.93 
African populations show a similarly reduced 
prevalence,2,4,94,95 although in areas where much inter-
marriage with white people takes place the frequency is 
higher.2,4,94

Currently, the higher incidence of Huntington’s 
disease in white populations compared with African or 
Asian people relates to the higher frequency of huntingtin 
alleles with 28–35 CAG repeats in white individuals.34,94 
In people with dentatorubropallidoluysian atrophy, 
which is frequent in Asia, expanded alleles for the causal 
gene (ATN1) are much more typical in Asian 
populations.34,93,94

Why do population diff erences in huntingtin alleles 
persist? What is the genetic fi tness of Huntington’s 
disease? Findings have shown no consistent increase or 
decrease in the number of children of aff ected 
individuals.4,94 Furthermore, the HD gene does not seem 
to confer any promising health benefi ts other than a 
possible lower incidence of cancer,96 perhaps related to an 
upregulation of TP53 in Huntington’s disease.97 No data 
suggest that expanded huntingtin alleles protect against 
epidemic infectious disease. 

Huntingtin and pathogenesis of Huntington’s 
disease 
Huntingtin is expressed in all human and mammalian 
cells, with the highest concentrations in the brain and 
testes; moderate amounts are present in the liver, heart, 
and lungs.98 Recognisable orthologs of the protein are 
present in many species, including zebrafi sh, drosophila, 
and slime moulds.99,100 The role of the wild-type protein is, 
as yet, poorly understood, as is the underlying 
pathogenesis of Huntington’s disease. 

One mechanism by which an autosomal-dominant 
disorder such as Huntington’s disease could cause illness 
is by haploinsuffi  ciency,101 in which the genetic defect 
leads to inadequate production of a protein needed for 
vital cell function. This idea seems unlikely34,99 because 
terminal deletion or physical disruption of the HD gene 
in man101,102 does not cause Huntington’s disease. 
Furthermore, one copy of the HD gene does not cause a 
disease phenotype in mice. Whereas homozygous 
absence of the HD gene is associated with embryonic 
lethality in animals, people homozygous for the HD gene 
have typical development.34,79,99

Findings suggest that the mutant HD gene confers a 
toxic gain of function. A persuasive line of evidence for 
this idea comes from nine other known human genetic 
disorders with expanded (and expressed) polyglutamine 
repeats: spinocerebellar ataxia types 1, 2, 3, 6, 7, 12, and 17; 
dentatorubropallidoluysian atrophy; and spinobulbar 
muscular atrophy.103–113 For none of these disorders is there 
evidence to suggest an important role for haplo-
insuffi  ciency. In spinobulbar muscular atrophy, complete 
deletion of the androgen receptor is not associated with 
neuromuscular disease.34,104,105 All nine diseases show 
neuronal inclusions containing aggregates of poly-
glutamines and all have a pattern of selective neuro-
degeneration. One of the most striking features of these 
disorders is the robust inverse correlation between age of 
onset and number of polyglutamine repeats (fi gure 3). 
Results suggest that the length of the polyglutamine repeat 
indicates disease severity irrespective of the gene aff ected, 
with the longest repeat lengths associated with the most 
disabling early-onset (juvenile) forms of these disorders. 
Although diffi  cult to confi rm, some data also suggest that 
the rate of progression might be faster with longer CAG 
repeats, particularly for individuals with juvenile-onset 
disease.114–116
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The most convincing evidence for a gain of function in 
Huntington’s disease is the structural biology of 
polyglutamine strands. In-vitro evidence suggests that 
polyglutamines will begin to aggregate, initially by 
forming dimers, trimers, and oligomers. This process 
needs a specifi c concentration of protein and a minimum 
of 37 consecutive glutamine residues, follows a period of 
variable abeyance and proceeds faster with higher 
numbers of glutamine repeats. These fi ndings might 
account for both delayed onset of disease and the close 
correlation with polyglutamine length.117 The rate of 
aggregation increases with the number of glutamine 
residues, which accords with evidence showing that 
length of expansion is associated with early age of onset. 
Huntington’s disease arises only in patients with 36 
repeats or more, corresponding to 38 glutamine residues 
(a normal huntingtin sequence after the poly-CAG tract 
contains CAA and CAG, which both code for glutamine).99 
Individuals with 36–40 CAG repeats (38–42 residues) 
show variable penetrance with respect to the Huntington’s 
disease phenotype, with fewer people having symptoms 
with 36 repeats and only rare cases showing no symptoms 
at 40 repeats.34,94 Other CAG-repeat disorders have closely 
related, but somewhat diff erent, repeat ranges (fi gure 3) 
associated with age of onset, but it is noteworthy that 
only in Huntington’s disease is the polyglutamine strand 
at the N-terminus of the expressed protein. Other 
characteristics of the expressed proteins in these 
disorders probably aff ect aggregation.  

The mechanism whereby polyglutamine aggregation 
leads to selective neuronal dysfunction in Huntington’s 
disease and eventually neurodegeneration has not yet 
been elucidated, but several key processes have been 
identifi ed. The fi rst steps seem to involve proteolysis and 
aggregation, as outlined above. Mutant huntingtin is at 
higher risk of proteolysis than wild-type protein and its 
truncation facilitates aggregation.99,118–121 The poly-
glutamine strand in the mutant protein occupies only a 
small proportion of its length,25 and a shorter protein 
could reduce steric interference. Evidence suggests that 
aggregates of truncated huntingtin are toxic and likely to 
translocate to the nucleus.49,118–121

Prolonged mutant huntingtin production and aggregate 
formation are believed to eventually overcome the ability 
of cells to degrade them, via either proteasomes or 
autophagic vacuolisation,6,34,103 leading to an increased 
load of unmanageable aggregate proteins. Aggregates 
also interfere with normal proteins by recruiting some of 
them into their matrix. Such proteins include those that 
usually interact with wild-type huntingtin,34,103,122 
suggesting that perhaps truncated and aggregated 
mutant huntingtin retains active binding sites. Through 
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these and possibly other mechanisms, mutant huntingtin 
aff ects several nuclear and cytoplasmic proteins that 
regulate transcription,8,34,103 apoptosis,34,103,123 mitochondrial 
function,34,103,124 tumour suppression,97 vesicular and 
neurotransmitter release,46,47,125 and axonal transport.126 
Through the many mechanisms described above, mutant 
huntingtin might not only have a toxic gain of function 
but also exert a dominant negative eff ect, in which it 
interferes with the typical function of wild-type 
huntingtin.52,127,128

Another step in the pathogenesis of Huntington’s 
disease might entail cell-cell interactions. Mutant 
huntingtin might cause harm to a neuron, by disrupting 
the function of nearby neurons or glia that provide 
important support to that neuron. For example, in a 
transgenic mouse model of Huntington’s disease, 
interference of mutant huntingtin with the axonal 
transport and vesicular release of brain-derived 
neurotrophic factor in corticostriatal neurons seems 
to contribute to intrinsic dysfunction of striatal 
neurons.52,109,110 

Animal models of Huntington’s disease 
The earliest animal models of Huntington’s disease were 
developed in the 1970s on the basis of selective 
vulnerability of striatal neurons to excitotoxic 
aminoacids.129 These neurons have many glutamate 

receptors because corticostriatal pathways use this 
excitatory aminoacid as a primary neurotransmitter. 
Striatal neurons have also proven to be selectively 
vulnerable to 3-nitroproprionic acid, a mitochondrial 
toxin, suggesting that Huntington’s disease might aff ect 
energy metabolism in neurons.130

Transgenic animal models of Huntington’s disease 
were fi rst created in mice131 and subsequently in Drosophila 
spp and Caenorhabditis elegans.132,133 The fl y and mouse 
models consistently show neuronal polyglutamine 
inclusions and indicate that pathology is dependent on 
polyglutamine length, is late onset, progressive, motor, 
and degenerative, with neuronal dysfunction followed by 
neuronal death.133 Similar animal models of other 
inherited polyglutamine disorders have been 
developed.103,132,133

Although post-mortem human brain tissue from end-
stage Huntington’s disease patients is available, animal 
models are invaluable because they provide material for 
histopathological and biological studies in the earliest 
stages of disease pathogenesis and for assessment of cell-
cell interactions.52 The transgenic animal models also 
allow insertion of modifying genes and blinded drug 
treatment trials.99,132,133 For example, in a transgenic 
mouse model in which expression of mutant huntingtin 
protein with 94 polyglutamines could be switched off , 
not only was the clinical syndrome reversed but also 
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This fi gure depicts the sequential evolution of events and ultimately recurrent nature of Huntington’s disease from the perspective of a child born to an aff ected parent. The family events timeline 

shows events that might occur in diff erent sequences for diff erent individuals; irrespective of timing, such events can have clinically signifi cant implications. 
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pathological inclusions were resolved.134 Work done in 
transgenic animal models might not always be applicable 
to human Huntington’s disease because of species 
diff erences and variations in huntingtin gene length, 
promoters, and mechanisms of expression.99,132 
Nonetheless, the ability to test drugs in an animal that 
has a lifespan of days or months provides a useful model 
for screening compounds that would need years of 
testing in patients.  

Symptomatic treatment of Huntington’s 
disease
Diagnosis of Huntington’s disease usually happens 
when patients seek medical advice with respect to 
diffi  culties with work. In such situations, a diagnosis 
might be partly welcome because it helps to establish 
disability. People who are doubtful about having 
Huntington’s disease, however, could benefi t from a 
delay in diagnosis until a follow-up visit, when laboratory 
confi rmation is available and they are supported by a 
family member. The visit at which a diagnosis of 
Huntington’s disease is made is especially important 
clinically. Family members might recall it in particular 
detail, so providing accurate information about genetics 
and sources of support is vital. Making the experience as 
positive as possible—by dispelling myths and identifying 
strategies for good family experiences—establishes a 
professional bond that can be helpful later should 
diffi  culties arise.    

Like other chronic diseases, managing patients with 
Huntington’s disease requires a proper appreciation of the 
limitations of medical management. Despite research 
advances in the past 20 years, medical treatment has made 
little progress. The survival of aff ected individuals in the 
Lake Maracaibo region of Venezuela, where medical 
technology is largely unavailable, is similar to that of 
populations with ready access to treatments.14 Antichoreic 
drugs such as tetrabenezine135 or neuroleptics off er patients 
with severe chorea a respite from their constant involuntary 
movements. However, declining function might not be an 
indication for increasing these drugs because they can 
cause bradykinesia, rigidity, and depression or sedation. 
Aff ective disorders in Huntington’s disease are amenable 
to psychiatric treatment, so prompt intervention is 
advisable.      

Counselling can be helpful for patients, their spouses, 
and individuals at risk for Huntington’s disease. Even 
though only a few patients take advantage of predictive or 
prenatal testing, frank discussions can help them deal with 
the complex issues of family, fi nancial, and career planning 
(fi gure 4). Support groups are invaluable sources of 
information and insight that can help patients and families 
through the recurring diffi  culties of Huntington’s disease.

Behavioural aspects of Huntington’s disease can be 
especially troublesome. In the doctor’s offi  ce, patients and 
family members sometimes belabour the cosmetically 
distracting motor symptoms of the disorder, such as 

Panel: Behavioural diffi  culties and symptoms in patients 

with Huntington’s disease10,14

Apathy or lack of initiative 

Dysphoria

Irritability

Agitation or anxiety

Poor self-care

Poor judgment

Infl exibility

Frequent symptoms (20–50% of patients)

Disinhibition

Depressed mood

Euphoria

Aggression

Infrequent symptoms (5–12%)

Delusions

Compulsions

Rare symptoms (<5%)

Hypersexuality

Hallucinations

Drugs with reported symptomatic 

benefi t (chorea only)

Drugs in clinical trials No protective benefi t 

recorded

Amantadine Creatine Baclofen

Remacemide Riluzole Vitamin E

Levetiracetam Ethyl eicasapentaenoic acid Lamotrigine

Tetrabenazine Mercaptamine Remacemide

Minocycline

Phenylbutyrate

Coenzyme Q 10

OPC-14117 (Otsuka Pharmaceuticals, 

Tokushima, Japan)

Tauroursodeoxychalic acid

Table 3: Potential treatments for Huntington’s disease tested in human trials 

Drugs with reported benefi t Interventions with reported 

benefi t

No benefi ts noted

Lithium Stem cell transplants Rofecoxib

Creatine Environment enrichment Dichloroacetate

Trehalose Intrabodies Aspirin

Paroxetine Asialoerythropoietin

Clioquinol S-PBN

Mercaptamine

Sirolimus

Remacemide

Minocycline

Phenylbutyrate

Thioetic acid

Gabapentin-lactam

Table 2: Potential treatments for Huntington’s disease tested in transgenic animal models 
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dystonia or chorea, and might need direct questioning to 
de scribe treatable aff ective disorders or disruptive 
symptoms such as irritability or compulsions. Poor 
hygiene, impaired judgment, impulsiveness, and aggres-
sion can happen as well (panel).136,137 Sometimes, 
acknowledging the diffi  culties faced by families and 
caregivers is all that can be done.   

Patients with Huntington’s disease love to eat, yet weight 
loss is typical in these individuals.138 Discussion of food 
preferences is an enjoyable part of seeing such patients in 
the clinic. However, as their disease progresses, feeding 
becomes increasingly diffi  cult, with dysarthria, dysphagia, 
and diffi  culty getting food into the mouth. Smaller bites, 
use of thickening agents, and reminders not to eat quickly 
may be of benefi t.139

Experimental treatments
Currently, several drugs for Huntington’s disease are in 
clinical trials to slow the progression of the disease; a few 
agents have shown promise in work done in animal 
models.140,141 The most intriguing research to date has been 
with coenzyme Q10, which has shown eff ectiveness in 
transgenic animal models of Huntington’s disease and a 
possibility of improvement in a human trial.142 This 
substance is believed to work by enhancing mitochondrial 
function in Huntington’s disease. A long-term clinical trial 
of high doses of coenzyme Q10 in patients with 
Huntington’s disease has received federal funding and will 
begin soon.

However, for completion, standard clinical trials of 
drugs such as coenzyme Q10 take several years and entail 
many patients. One way to speed up assessment of 
promising treatments is with futility studies.143 This type 
of study design—by prudent use of historical controls 
and predetermination of what constitutes a desirable 
magnitude of eff ect—can be used as an intermediate 
step to screen compounds for defi nitive trials. Such 
studies are especially useful when risks of long-term 
side-eff ects from treatment are possible or when funding 
and suitable volunteers are in limited supply. This type of 
study is currently being used to test minocycline, a drug 
with unique anti-infl ammatory and antiapoptotic eff ects, 
in Huntington’s disease. Tables 2 and 3 list other potential 
drugs. 

The development of surrogate markers of Huntington’s 
disease for clinical trials might also be a promising way 
to assess new treatments quickly and safely. Use of 
disease markers to monitor progression of cancer or HIV 
has accelerated the pace of drug discovery for these 
disorders. Current interest in Huntington’s disease has 
focused on imaging biomarkers,61 but the potential for 
serological markers is also of interest.144–146 A promising 
study has shown that Huntington’s disease transgenic 
mice without caspase 6 do not develop symptoms. 
Therefore, treatment of Huntington’s disease in humans 
by interfering with the catabolism of mutant huntingtin 
by this enzyme could be possible.147

Future work
The best therapeutic option for Huntington’s disease 
could entail starting treatment in the asymptomatic 
phase of the disorder. Currently, in several observational 
studies of at-risk individuals, the feasibility of using the 
onset of the clinical Huntington’s disease phenotype or 
other biomarkers of disease (such as changes on imaging 
studies) is being investigated as a potential endpoint for 
future clinical trials.148 Successes in animal models, 
identifi cation of possible surrogate markers, progress in 
symptomatic treatment,149 and design of effi  cient study 
designs all provide tangible reasons for optimism in the 
Huntington’s disease community. With adequate funding 
for continued research, the discovery of meaningful 
treatment seems imminent.      
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